ADVANCED PHARMACOLOGY - II (MPL 201T)

Scope

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved

Objectives

Upon completion of the course the student shall be able to:

- Explain the mechanism of drug actions at cellular and molecular level
- Discuss the Pathophysiology and pharmacotherapy of certain diseases
- Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

THEORY	60 Hrs
 Endocrine Pharmacology Molecular and cellular mechanism of action of hormones suc growth hormone, prolactin, thyroid, insulin and sex hormones Anti-thyroid drugs, Oral hypoglycemic agents, contraceptives, Corticosteroids. Drugs affecting calcium regulation 	12 :h as Hrs Oral
2 Chemotherapy Cellular and molecular mechanism of actions and resistant antimicrobial agents such as ß-lactams, aminoglycosides, quinolones, Macr antibiotics. Antifungal, antiviral, and anti-TB drugs.	12 ce of Hrs rolide
 Chemotherapy Drugs used in Protozoal Infections Drugs used in the treatment of Helminthiasis Chemotherapy of cancer Immunopharmacology Cellular and biochemical mediators of inflammation and imm response. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma COPD. Immunosuppressants and Immunostimulants 	12 Hrs nune and

4 GIT Pharmacology 12 Antiulcer drugs, Prokinetics, antiemetics, anti-diarrheals and Hrs drugs for constipation and irritable bowel syndrome. Chronopharmacology Biological and circadian rhythms, applications of chronotherapy in various diseases like cardiovascular disease, diabetes, asthma and peptic ulcer

Free radicals Pharmacology 12
 Generation of free radicals, role of free radicals in etiopathology of Hrs various diseases
 such as diabetes, neurodegenerative diseases and cancer.
 Protective activity of certain important antioxidant
 Recent Advances in Treatment:
 Alzheimer's disease, Parkinson's disease, Cancer, Diabetes
 mellitus

REFERENCES

- 1. The Pharmacological basis of therapeutics- Goodman and Gill man's
- 2. Principles of Pharmacology. The Pathophysiologic basis of drug therapy by David E Golan et al.
- 3. Basic and Clinical Pharmacology by B.G -Katzung
- 4. Pharmacology by H.P. Rang and M.M. Dale.
- 5. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
- 6. Text book of Therapeutics, drug and disease management by E T. Herfindal and Gourley.
- 7. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists
- 9. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
- 10. A Complete Textbook of Medical Pharmacology by Dr. S.K Srivastava published by APC Avichal Publishing Company.
- 11. KD.Tripathi. Essentials of Medical Pharmacology
- 12. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J,Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers

PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS-II (MPL 202T)

Scope:

This subject imparts knowledge on the preclinical safety and toxicological evaluation of drug & new chemical entity. This knowledge will make the student competent in regulatory toxicological evaluation.

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the various types of toxicity studies.
- Appreciate the importance of ethical and regulatory requirements for toxicity studies.
- Demonstrate the practical skills required to conduct the preclinical toxicity studies.

THEORY

60 Hrs

- Basic definition and types of toxicology (general, mechanistic, 12 regulatory and descriptive) Hrs
 Regulatory guidelines for conducting toxicity studies OECD, ICH, EPA and Schedule Y
 OECD principles of Good laboratory practice (GLP)
 History, concept and its importance in drug development
- Acute, sub-acute and chronic- oral, dermal and inhalational 12 studies as per OECD guidelines. Hrs Acute eye irritation, skin sensitization, dermal irritation & dermal toxicity studies. Test item characterization- importance and methods in regulatory toxicology studies
- 3 Reproductive toxicology studies, Male reproductive toxicity 12 studies, female reproductive studies (segment I and segment III), Hrs teratogenecity studies (segment II) Genotoxicity studies (Ames Test, in vitro and in vivo Micronucleus and Chromosomal aberrations studies) In vivo carcinogenicity studies
- 4 IND enabling studies (IND studies)- Definition of IND, importance 12 of IND, industry perspective, list of studies needed for IND Hrs submission.

Safety pharmacology studies- origin, concepts and importance of safety pharmacology.

Tier1- CVS, CNS and respiratory safety pharmacology, HERG assay. Tier2- GI, renal and other studies

5 Toxicokinetics- Toxicokinetic evaluation in preclinical studies, 12 saturation kinetics Importance and applications of toxicokinetic Hrs studies.

Alternative methods to animal toxicity testing.

REFERENCES

- 1. Hand book on GLP, Quality practices for regulated non-clinical research and development (http://www.who.int/tdr/publications/documents/glphandbook.pdf).
- Schedule Y Guideline: drugs and cosmetics (second amendment) rules, 2005, ministry of health and family welfare (department of health) New Delhi
- 3. Drugs from discovery to approval by Rick NG.
- 4. Animal Models in Toxicology, 3rd Edition, Lower and Bryan
- 5. OECD test guidelines.
- 6. Principles of toxicology by Karen E. Stine, Thomas M. Brown.
- Guidance for Industry M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals (http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinform ation/guidances/ucm073246.pdf)

PRINCIPLES OF DRUG DISCOVERY (MPL 203T)

Scope:

The subject imparts basic knowledge of drug discovery process. This information will make the student competent in drug discovery process

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the various stages of drug discovery.
- Appreciate the importance of the role of genomics, proteomics and bioinformatics in drug discovery
- Explain various targets for drug discovery.
- Explain various lead seeking method and lead optimization
- Appreciate the importance of the role of computer aided drug design in drug discovery

THEORY

60 Hrs

1. An overview of modern drug discovery process: Target 12 identification, target validation, lead identification and lead Hrs Optimization. Economics of drug discovery.

Target Discovery and validation-Role of Genomics, Proteomics and Bioinformatics. Role of Nucleic acid microarrays, Protein microarrays, Antisense technologies, siRNAs, antisense oligonucleotides, Zinc finger proteins. Role of transgenic animals in target validation.

2 Lead Identification- combinatorial chemistry & high throughput 12 screening, in silico lead discovery techniques, Assay development Hrs for hit identification.

Protein structure

Levels of protein structure, Domains, motifs, and folds in protein structure. Computational prediction of protein structure: Threading and homology modeling methods. Application of NMR and X-ray crystallography in protein structure prediction

Rational Drug Design
 Traditional vs rational drug design, Methods followed in traditional
 Hrs
 drug design, High throughput screening, Concepts of Rational
 Drug Design, Rational Drug Design Methods: Structure and
 Pharmacophore based approaches

Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening,

- 4 Molecular docking: Rigid docking, flexible docking, manual docking; Docking based screening. De novo drug design. Hrs Quantitative analysis of Structure Activity Relationship History and development of QSAR, SAR versus QSAR, Physicochemical parameters, Hansch analysis, Fee Wilson analysis and relationship between them.
- 5 QSAR Statistical methods regression analysis, partial least 12 square analysis (PLS) and other multivariate statistical methods. Hrs 3D-QSAR approaches like COMFA and COMSIA Prodrug design-Basic concept, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design

REFERENCES

- 1. MouldySioud. Target Discovery and Validation Reviews and Protocols: Volume 2 Emerging Molecular Targetsand Treatment Options. 2007 Humana Press Inc.
- 2. Darryl León. Scott Markelln. Silico Technologies in Drug Target Identification and Validation. 2006 by Taylor and Francis Group, LLC.
- 3. Johanna K. DiStefano. Disease Gene Identification. Methods and Protocols. Springer New York Dordrecht Heidelberg London.
- 4. Hugo Kubiny. QSAR: Hansch Analysis and Related Approaches. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- 5. Klaus Gubernator, Hans-Joachim Böhm. Structure-Based Ligand Design. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- Abby L. Parrill. M. Rami Reddy. Rational Drug Design. Novel Methodology and Practical Applications. ACS Symposium Series; American Chemical Society: Washington, DC, 1999.
- 7. J. Rick Turner. New drug development design, methodology and, analysis. John Wiley & Sons, Inc., New Jersey.

CLINICAL RESEARCH AND PHARMACOVIGILANCE (MPL 204T)

Scope:

This subject will provide a value addition and current requirement for the students in clinical research and pharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials. This subject also focuses on global scenario of Pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing drug safety data in Pre-clinical, Clinical phases of Drug development and post market surveillance.

Objectives:

Upon completion of the course, the student shall be able to,

- Explain the regulatory requirements for conducting clinical trial
- Demonstrate the types of clinical trial designs
- Explain the responsibilities of key players involved in clinical trials
- Execute safety monitoring, reporting and close-out activities
- Explain the principles of Pharmacovigilance
- Detect new adverse drug reactions and their assessment
- Perform the adverse drug reaction reporting systems and communication in Pharmacovigilance

THEORY

60 Hrs

1. 12 **Regulatory Perspectives of Clinical Trials:** Principles of International Conference Origin and on Hrs Harmonization - Good Clinical Practice (ICH-GCP) guidelines Institutional Ethical Committee: Review Board. Fthical Guidelines for Biomedical Research and Human Participant-Schedule Y. ICMR Informed Consent Process: Structure and content of an Informed Consent Process Ethical principles governing informed consent process 2 Clinical Trials: Types and Design 12 Experimental Study- RCT and Non RCT, Hrs Observation Study: Cohort, Case Control, Cross sectional Clinical Trial Study Team Roles and responsibilities of Clinical Trial Personnel: Investigator,

Study Coordinator, Sponsor, Contract Research Organization and its management